A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1alpha.
نویسندگان
چکیده
Translation elongation factor 1alpha (EF-1alpha, or EF-Tu in bacteria) is a highly conserved core component of the translation machinery that is shared by all cellular life. It is part of a large superfamily of GTPases that are involved in translation initiation, elongation, and termination, as well as several other cellular functions. Eukaryotic EF-1alpha (eEF-1alpha) is well studied and widely sampled and has been used extensively for phylogenetic analyses. It is generally thought that such highly conserved and functionally integrated proteins are unlikely to be involved in events such as lateral gene transfer or ancient duplication and gene sorting, which would undermine phylogenetic reconstruction. Here we describe a GTPase called EF-like (EFL), which is very similar to, but also distinct from, canonical eEF-1alpha. EFL is found in a wide variety of eukaryotes (dinoflagellates, haptophytes, cercozoa, green algae, choanoflagellates, and fungi), but its distribution is punctate: organisms that possess EFL are not closely related to one another, and EFL appears to be absent from the closest relatives of organisms that do possess it. Moreover, in most genomes where EFL is present, canonical eEF-1alpha appears to be absent. Analysis of functional divergence suggests that, whereas EFL is divergent in general, putative functional binding sites involved in translation are not significantly divergent as a whole. Altogether, it appears that EFL has replaced eEF-1alpha several times independently. This finding could be an indication of an ancient paralogy or, more likely, eukaryote-to-eukaryote lateral gene transfer.
منابع مشابه
EFL GTPase in cryptomonads and the distribution of EFL and EF-1alpha in chromalveolates.
EFL (EF-like protein) is a member of the GTPase superfamily that includes several translation factors. Because it has only been found in a few eukaryotic lineages and its presence correlates with the absence of the related core translation factor EF-1alpha, its distribution is hypothesized to be the result of lateral gene transfer and replacement of EF-1alpha. In one supergroup of eukaryotes, t...
متن کاملDistribution and Phylogeny of EFL and EF-1α in Euglenozoa Suggest Ancestral Co-Occurrence Followed by Differential Loss
BACKGROUND The eukaryotic elongation factor EF-1alpha (also known as EF1A) catalyzes aminoacyl-tRNA binding by the ribosome during translation. Homologs of this essential protein occur in all domains of life, and it was previously thought to be ubiquitous in eukaryotes. Recently, however, a number of eukaryotes were found to lack EF-1alpha and instead encode a related protein called EFL (for EF...
متن کاملMoonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization.
Eukaryotic polypeptide elongation factor EF-1 is not only a major translational factor, but also one of the most important multifunctional (moonlighting) proteins. EF-1 consists of four different subunits collectively termed EF-1alphabeta beta'gamma and EF-1alphabeta gammadelta in plants and animals, respectively. EF-1alpha x GTP catalyzes the binding of aminoacyl-tRNA to the A-site of the ribo...
متن کاملEvolution of eukaryotic translation elongation and termination factors: variations of evolutionary rate and genetic code deviations.
Translation is carried out by the ribosome and several associated protein factors through three consecutive steps: initiation, elongation, and termination. Termination remains the least understood of them, partly because of the nonuniversality of the factors involved. To get some insights on the evolution of eukaryotic translation termination, we have compared the phylogeny of the release facto...
متن کاملMolecular architecture of leishmania EF-1alpha reveals a novel site that may modulate protein translation: a possible target for drug development.
Elongation factor-1alpha plays an essential role in eukaryotic protein biosynthesis. Recently, we have shown by protein structure modeling the presence of a hairpin-loop of 12 amino acids in mammalian EF-1alpha that is absent in the leishmania homologue [D. Nandan, A. Cherkasov, R. Sabouti, T. Yi, N.E. Reiner, Molecular cloning, biochemical and structural analysis of elongation factor-1 alpha f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 43 شماره
صفحات -
تاریخ انتشار 2004